Characterization of PtH₃(P^tBu₃)₂⁺ as the First Dihydrogen Complex of d⁸, Pt(II)

D. G. Gusev, J. U. Notheis, J. R. Rambo, B. E. Hauger,

O. Eisenstein,* and K. G. Caulton*

Department of Chemistry and Molecular Structure Center Indiana University, Bloomington, Indiana 47405 Laboratoire de Chimie Théorique Bâtiment 490, Université de Paris-Sud 91405 Orsay, France

Received May 23, 1994

The vast majority of H2 complexes identified at present involve a d⁶ configuration of the transition metal, so it is probable that other configurations will better define the limits of existence of molecular H₂ as a ligand. We describe here the case where a platinum dihydrogen complex will have a d8 configuration, while the product of oxidative addition involves a d6 configuration (eq 1).¹ To accomplish this, it was necessary to find conditions in

$$\mathbf{L}_{n}\mathbf{P}\mathbf{t}^{\mathrm{IV}}(\mathbf{H})_{2} \stackrel{?}{\hookrightarrow} \mathbf{L}_{n}\mathbf{P}\mathbf{t}^{\mathrm{II}}(\mathbf{H}_{2}) \tag{1}$$

which H₂ loss is disfavored, since certain compounds formulated as Pt^{IV} hydrides (e.g., L₂PtH₂Cl₂, L₂PtH₃Cl) were reported to readily lose H2.2 We felt that this might be accomplished by H2 coordination to L₂PtH⁺,³ where the cation would be particularly electrophilic. We report here the characterization (from each direction) of the equilibrium in eq 2.

$$L_2PtH_2 + HZ \rightarrow L_2PtH_3 + Z^- \rightleftharpoons L_2PtH^+ + Z^- + H_2 \quad (2)$$

$$1 \qquad 2$$

$$L = P^t B u_3$$
 $Z = F_3 C S O_3$

We discuss first the results of calculations of $PtH_3(PH_3)_2^+$, in part since they preceded the experiments chronologically. We have investigated the possible structures of the model ion PtH₃-(PH₃)₂⁺ using core potential ab initio calculations with the Gaussian92 set of programs.⁴ Geometry optimization^{4,5} at the RHF/MP2 level, using a gradient method and without any symmetry constraint, yields a complex (I) with H₂ lying in the HPtP₂ plane and trans to the hydride. The calculated H-H distance, 0.836 Å, is indicative of coordinated dihydrogen. Optimization of the structure with the H-H bond perpendicular

to the HPtP2 plane (II) yields an energy virtually identical (i.e., within 0.1 kcal/mol) to that of I, with no significantly altered bond lengths or angles.⁶ PtH(PH₃)₂+⁷ and H₂ were also optimized at the RHF/MP2 level in order to calculate at Pt/H₂ bond dissociation energy for I and II. After correction (5.2 kcal/mol) for basis set superposition error,8 a dissociation energy of 16 kcal/ mol is determined. No trihydride minimum was obtained on the potential energy surface. C_s constrained optimization of a structure having a T-shaped, mirror-symmetric arrangement of the three hydrides yielded and energy 18 kcal/mol above the minimum. This large energy difference suggests that redox cleavage of the H-H bond in PtH(H₂)(PH₃)₂+ will not lead to fast H/H₂ exchange.

In Figure 1, the ²H and ²H¹H NMR spectra (-80 °C) are presented for the isotopomers of $Pt(H,D)_3(P^tBu_3)_2^+(1)$, formed by reaction between $Pt(H)_2(P^{t}Bu_3)_2$ and CF_3SO_3D . These deuterium spectra, which are free from overlap with resonances of the phosphines (as in the case of ¹H NMR), reveal PtD and Pt(DH) resonances of 1.9 The multiplet of coordinated DH, which appears at unusually low field (δ 1.12), is distinguished by one of the largest known D-H coupling constants (34.7 Hz) and by a ${}^{1}J(D-Pt)$ of 44 Hz; this is the first observation of a metal-H₂ spin-spin interaction. These couplings provide unambiguous evidence for the presence of both H-D and Pt-(HD) bonds, i.e., for formulation of 1 as a dihydrogen complex and uncomplicated by dissociative exchange dynamics at -80 °C.

A ${}^{1}J(H-Pt)$ of 286 Hz can be calculated from ${}^{1}J(D-Pt) = 44$ Hz according to the difference in the H/D gyromagnetic ratios. Unfortunately, 1J(H-Pt) couplings are quite sensitive to the nature of the trans ligands, which makes a comparison difficult. For example, for the hydride trans to H_2 in 1, ${}^1J(H-Pt) = 1360$ Hz, which is comparable to that (1470 Hz) in PtH(acetone)(P^tBu₃)₂⁺.³ In PtH(P^tBu₃)₂⁺ and trans-Pt(H)₂(P^tBu₃)₂, the couplings are 2600 and 780 Hz, respectively. The 286-Hz coupling is the least of these, which, perhaps, has some connection with the Pt-H distances in the $Pt(H_2)$ fragment being expected to be quite long.

In the low-temperature ¹H NMR spectra, the H₂ resonance of 1 is overlapped by the very intense methyl resonance and severely broadened by strong H-H dipole-dipole interaction (the latter is more than 10 times weaker in H-D). The hydride signal is a well-resolved triplet at δ -10.4 and has a long T_1 (400 ms at -80

© 1994 American Chemical Society

⁽¹⁾ This is the reverse of the usual situation, where an H2 form is favored by those factors which favor a d⁶ octahedral structure. Moreover, Pt(IV) hydrides are little studied, and there is currently no H2 complex of a divalent platinum group metal.

^{(2) (}a) Anderson, D. W. W.; Ebsworth, E. A. V.; Rankin, D. W. H. J. Chem. Soc., Dalton Trans. 1973, 854. (b) Ebsworth, E. A. V.; Marganian, V. M.; Reed, F. J. S. J. Chem. Soc., Dalton Trans. 1978, 1167

^{(3) [}PtH(PtBu₃)₂]CF₃SO₃ was prepared by metathesis of PtHCl(PtBu₃)₂ with AgCF3SO3: Goel, R. G.; Srivastava, R. C. Can. J. Chem. 1983, 61, 1352.

⁽⁴⁾ Pt and P atoms were both calculated using an ECP, including the 5s and 5p shells for Pt. A triple-5 basis set was used for the 5d shell of Pt and the 1s shells of the hydrogen atoms bound to the metal center, a double-5 basis set was used for the valence shell of P, and a single-5 basis set was used for the 1s shells of the phosphine H atoms. The basis sets of all atoms bound to the Pt also included polarization functions. Additional details are available in the supplementary material. Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Reploge, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J. Stewart, J. P.; Pople, I. A. *Gaussian* 92 Periode R. Causian Baker, J.; Stewart, J. J. P.; Pople, J. A. Gaussian 92, Revision B; Gaussian, Inc.: Pittsburgh, PA, 1992.

⁽⁵⁾ PH3 rotation was not permitted. Full Cartesian optimization gives structures identical to I and II. Hessian calculations indicate that I and II are minima.

⁽⁶⁾ The bulky phosphines in the experimental complex will thus determine the structure.

⁽⁷⁾ The optimized structure of PtH(PH₃)₂⁺ is very similar to that calculated for the isoelectronic RhH(PH₃)₂. Daniel, C.; Koga, N.; Han, J.; Fu, X. Y.; Morokuma, K. J. Am. Chem. Soc. 1988, 110, 3773.
(8) Rove S. F.: Marchine F. Marchine Research F. March

Morokuma, K. J. Am. Chem. Soc. 1988, 110, 3773. (8) Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. (9) NMR spectroscopic data for 1: ²H NMR (CH₂Cl₂, -80 °C) δ -10.3 (¹/(D-Pt) = 202 Hz, PtD), 1.12 (¹/(D-H) = 34.7 Hz, ¹/(D-Pt) = 44 Hz, Pt(DH)); ¹H NMR (CD₂Cl₂, -80 °C) δ -10.42 (t, ²J(H-Pt) = 8.3 Hz, ¹J(H-Pt) = 1360 Hz, 1H, PtH), 1.34 (app t, J = 7.3 Hz, 36 Hz, CH₃), 1.58 (unresolved app t, 18 H, CH₃); ³¹P NMR (CD₂Cl₂, -80 °C) δ 87.2 (¹J(P-Pt) = 2515 Hz) (doublet in the budged experture) (doublet in the hydride-coupled spectrum).

Figure 1. ${}^{2}H{}^{1}H{}$ (upper) and ${}^{2}H{}$ (lower) NMR spectra of isotopomers of 1 prepared with CF₃SO₃D at -80 °C in CH₂Cl₂(S). ${}^{195}Pt$ satellites are indicated by asterisks.

°C) (300 MHz), indicating no H/H_2 exchange on the NMR time scale at -80 °C. Slow exchange is consistent with the hydride and H_2 ligands being mutually *trans*.

The ¹H NMR data for solutions of PtH(PⁱBu₃)₂⁺ (2) in the presence of H₂ show that H₂ coordination in 1 is reversible, and the position of the equilibrium (eq 2) is strongly temperature-dependent. Above-20 °C, the ¹H NMR spectra are characterized by the presence of *two* exchange-averaged resonances: one of the temperature-dependent chemical shifts lies between free (δ 4.55) and coordinated (δ 1.12) H₂, and the other is between PtH in 1 (δ -10.4) and PtH in 2 (δ -36.0). Both of the averaged resonances are broadened at 20 °C, but remarkably there is no saturation transfer between them. The exchange-averaged signal in the hydride region is flanked by platinum satellites, while the spin-spin coupling is completely destroyed for the exchange-averaged signal for H₂. These observations clearly indicate that there is no intramolecular H/H₂ scrambling in 1 (on the NMR time scale), even at room temperature.

Eleven ¹H NMR spectra were collected between -10 and 20 °C for three samples with different concentrations of 2 under H₂. Using the experimentally determined line widths, chemical shifts, and T_1 relaxation times, the H₂ exchange was simulated with the DNMR5 program¹⁰ to yield rate constants k_1 for the H₂ loss from 1. ΔH^* of 11.0 \pm 0.4 kcal/mol and ΔS^* of 1.8 \pm 1.5 eu were derived from the Eyring plot of $\ln(k/T)$ vs 1/T. The bulk of PtBu₃ is apparently responsible for diminishing the experimental value from that calculated (16 kcal/mol) in the PH₃ model complex. A significantly larger activation enthalpy, $\Delta H^* = 20.0$ \pm 0.5 kcal/mol ($\Delta S^* = -1 \pm 2$ eu), is known for reductive elimination of H₂ from Pt(H)₂(PMe₃)₂.¹¹

It is probable that the detection of this first dihydrogen complex of Pt(II) relies in part on steric protection (by P^tBu_3) against H_2

displacement by the available (very weak) nucleophiles (triflate and CH_2Cl_2).¹² The very small ΔS^* for H_2 dissociation has been discussed earlier¹⁰ as due to the nature of the metal overlap with the $\sigma(H-H)$ orbital, which should decrease faster with distance than σ bonds to more conventional Lewis bases. The large ${}^{1}J(H-$ D) for coordinated HD is consistent with very little back-donation. Thus, $PtH(P^{*}Bu_{3})_{2}^{+}$ is a sufficiently strong Lewis acid to bind H_{2} but has very little reducing ability (not much H-H bond weakening and no evidence for $Pt^{IV}(H)_3(P^tBu_3)_2^+$ and consequent fast scrambling of the H and H₂ nuclei).¹³ While $Ir(H)_3(PH_3)_2$ is calculated to have a trihydride ground state, 14 isoelectronic PtH3- $(PH_3)_2^+$ has the metal oxidation state sufficiently high that the d^{6} (H)₃Pt^{IV} formulation is no longer favored. This noticeable difference in structure may also be related to the rarity of the Pt(IV) oxidation state when the coordination number is only five.15 With a different type and number of ligands, Pt^{IV} hydrides have been authenticated.^{2,16} Thus, both the Pt^{II}/H₂ complex reported here and Pt^{IV} hydrides are relevant to the catalysis (by Pt^0 and by Pt^{II}) of H_2/D_2 scrambling, since this process requires three or more H at the metal simultaneously.

Acknowledgment. The Laboratoire de Chimie Théorique is associated with the CNRS (URA 506) and is a member of ICMO and IPCM. We would like to thank Eric Clot for very useful discussion and technical assistance. Support for this work was provided by an international NSF/CNRS grant for USA-France scientific collaboration between Indiana University and the Laboratoire de Chimie Théorique. J.U.N. acknowledges support of a Deutsche Akademischer Austauschdienst Fellowship. J.R.R. thanks the Ministere des Affaires Etrangeres for a postdoctoral fellowship.

Supplementary Material Available: Basis sets, Cartesian coordinates, and energies for the RHF/MP2 optimized structures of $PtH(H_2)(PH_3)_2^+$ (3 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

(14) (a) Riehl, J.-F.; Jean, Y.; Eisenstein, O.; Pélissier, M. Organometallics
1992, 11, 729. (b) RhH₃L₂ complexes are known^{14c} but not characterized structurally. (c) Yoshida, T.; Okano, T.; Thorn, D. L.; Tulip, T. H.; Otsuka, S.; Ibers, J. A. J. Organomet. Chem. 1979, 181, 183.

(15) Jain, V. K.; Rao, G. S.; Jain, L. Adv. Organomet. Chem. 1987, 27, 113.

⁽¹⁰⁾ A similar kinetic analysis was recently published for $Ir(H_2)(H)_2X(P-Bu_2Me)_2$. For details, see: Hauger, B. E.; Gusev, D.; Caulton, K. G. J. Am. Chem. Soc. 1994, 116, 208 and references therein.

⁽¹¹⁾ Packett, D. L.; Trogler, W. C. Inorg. Chem. 1988, 27, 1768.

⁽¹²⁾ This is supported by the fact that the corresponding protonation of Pt(H)₂(PiP₁)₂ consumes all of this reagent but gives no detectable dihydrogen complex. Even at -90 °C, H₂ is evolved, and this reaction results in a single product, presumably PtH(CF₃SO₃)(PiP₁)₂ (¹H NMR (CD₂Cl₂, 20 °C) δ 2.44 (m, 6H, CH), 1.28 (app q, J = 7.5 Hz, 36H, CH₃), -27.53 (t, ²J(H-Pt) = 1616 Hz, 1H PtH). The reactivity of PtL₂ differs significantly for L = PiPr₃ and PiBu₃, see: Yoshida, T.; Otsuka, S. J. Am. Chem. Soc. 1977, 99, 2134.

⁽¹³⁾ Pt(H)₃(PⁱBu₃)₂⁺ can be present as a transient species in solution. This would explain formation of PtD(D₂)(PⁱBu₃)₂⁺ from PtH(PⁱBu₃)₂⁺ and D₂ (detected by ²H NMR). The calculated energy difference between Pt(H)₃-(PH₃)₂⁺ and PtH(H₂)(PH₃)₂⁺ predicts a barrier for oxidative addition $\Delta G^{\bullet} \geq 18$ kcal/mol (assuming small ΔS^{\bullet}). The rate constant for this process is less than 0.2 s⁻¹ (293 K), which is in agreement with the absence of H/H₂ scrambling on the NMR time scale (~1 s⁻¹).

^{(16) (}a) Packett, D. L.; Syed, A.; Trogler, W. C. Organometallics 1988,
7, 159. (b) Blacklaws, I. M.; Ebsworth, E. A. V.; Rankin, D. W. H.; Robertson,
H. E. J. Chem. Soc., Dalton Trans. 1978, 753. (c) Blacklaws, I. M.; Brown,
L. C.; Ebsworth, E. A. V.; Reed, F. J. S. J. Chem. Soc., Dalton Trans. 1978,
877.